
Abstract I present the mean metallicity distribution of stars in the Milky Way based on photometry from the Sloan Digital Sky Survey. I utilize an empirically calibrated set of stellar isochrones developed in previous work to estimate the metallicities of individual stars to a precision of 0.2 dex for reasonably bright stars across the survey area. I also obtain more precise metallicity estimates using priors from the Gaia parallaxes for relatively nearby stars. Close to the Galactic mid-plane ( kpc), a mean metallicity map reveals deviations from the mirror symmetry between the northern and southern hemispheres, displaying wave-like oscillations. The observed metallicity asymmetry structure is almost parallel to the Galactic mid-plane, and coincides with the previously known asymmetry in the stellar number density distribution. This result reinforces the previous notion of the plane-parallel vertical waves propagating through the disk, in which a local metallicity perturbation from the mean vertical metallicity gradient is induced by the phase-space wrapping of stars in the Z–V Z plane. The maximum amplitude of the metallicity asymmetry (Δ[Fe/H] ∼ 0.05) implies that these stars have been pulled away from the Galactic mid-plane by an order of pc as a massive halo substructure such as the Sagittarius dwarf galaxy plunged through the Milky Way. This work provides evidence that the Gaia phase-space spiral may continue out to .
Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Solar and Stellar Astrophysics (astro-ph.SR)
Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Solar and Stellar Astrophysics (astro-ph.SR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
