
Abstract Lenticular galaxies are generally thought to have descended from spirals via morphological transformation, although recent numerical simulations have shown that minor or even major mergers can also lead to an S0-like remnant. These mechanisms, however, are active in a dense environment such as a group or a cluster of galaxies—making it harder to explain the remarkable fraction of S0s found in the field. Here, we propose a new mechanism to form such lenticular galaxies. We show that an isolated cold disk settled into rotational equilibrium becomes violently unstable—leading to fragmentation and formation of stellar clumps that, in turn, not only cause the bulge to grow, but also increase the stellar disk velocity dispersion optimally in less than a billion years. Subsequently, the galaxy evolves passively without any conspicuous spiral structure. The final galaxy models resemble remarkably well the morphology and stellar kinematics of the present-day S0s observed by the Planetary Nebulae spectrograph. Our findings suggest a natural link between the high-redshift clumpy progenitors and the present-day S0 galaxies.
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
