
ABSTRACT We use ∼83,000 star-forming galaxies at 0.04 < z < 0.3 from the Sloan Digital Sky Survey to study the so-called fundamental metallicity relation (FMR) and report on the disappearance of its anti-correlation between metallicity and star formation rate (SFR) when using the new metallicity indicator recently proposed by Dopita et al. In this calibration, metallicity is primarily sensitive to the emission line ratio [N ii]λ6584/[S ii]λλ 6717, 6731 that is insensitive to dilution by pristine infalling gas that may drive the FMR anti-correlation with SFR. Therefore, we conclude that the apparent disappearance of the FMR (using this new metallicity indicator) does not rule out its existence.
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
