Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal Supplement Series
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deciphering the Morphological Origins of X-shaped Radio Galaxies: Numerical Modeling of Backflow versus Jet Reorientation

Authors: Gourab Giri; Bhargav Vaidya; Christian Fendt;

Deciphering the Morphological Origins of X-shaped Radio Galaxies: Numerical Modeling of Backflow versus Jet Reorientation

Abstract

Abstract X-shaped radio galaxies (XRGs) develop when certain extragalactic jets deviate from their propagation path. An asymmetric ambient medium (backflow model) or complex active galactic nucleus activity (jet-reorientation model) enforcing the jet direction to deviate may cause these structures. In this context, the present investigation focuses on the modeling of XRGs by performing 3D relativistic magnetohydrodynamic simulations. We implement different jet-propagation models applying an initially identical jet-ambient medium configuration to understand distinctive features. This study, the first of its kind, demonstrates that all adopted models produce XRGs with notable properties, thereby challenging the notion of a universal model. Jet reorientation naturally explains several contentious properties of XRGs, including wing alignment along the ambient medium’s primary axis, development of collimated lobes, and the formation of noticeably longer wings than active lobes. These XRGs disrupt the cluster medium by generating isotropic shocks and channeling more energy than in the backflow scenario. Our synthetic thermal X-ray maps of the cluster medium reveal four clear elongated cavities associated with the wing-lobe alignment, regardless of projection effects, but they affect their age estimation. We show that the depth and geometric alignment of the evolved cavities may qualify as promising characteristics of XRGs, which may be used to disentangle different formation scenarios.

Keywords

QB460-466, High Energy Astrophysical Phenomena (astro-ph.HE), Astrophysics of Galaxies (astro-ph.GA), Magnetohydrodynamical simulations, FOS: Physical sciences, Galaxy clusters, Relativistic jets, X-ray sources, Astrophysics, Astrophysics - High Energy Astrophysical Phenomena, Shocks, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold
Related to Research communities