Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2025
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detecting Stellar Coronal Mass Ejections via Coronal Dimming in the Extreme Ultraviolet

Authors: James Paul Mason; Allison Youngblood; Kevin France; Astrid M. Veronig; Meng Jin;

Detecting Stellar Coronal Mass Ejections via Coronal Dimming in the Extreme Ultraviolet

Abstract

Abstract Stellar flares and coronal mass ejections (CMEs) can strip planetary atmospheres, reducing the potential habitability of terrestrial planets. While flares have been observed for decades, stellar CMEs remain elusive. Extreme-ultraviolet (EUV) emissions are sensitive to both flares and CME-induced coronal dimming. We assess the detectability of stellar CME-induced EUV dimming events by adapting a known “Sun-as-a-star” dimming technique—validated by the Solar Dynamics Observatory’s EUV Variability Experiment (EVE)—to stellar conditions. We adapt the solar data to reflect a range of stellar intensities, accounting for intrinsic brightness, distance, and interstellar medium (ISM) attenuation. We generate synthetic light curves for two different missions: the legacy EUV Explorer (EUVE) and the proposed ESCAPE mission. Our results indicate that dimming detections are well within reach. EUVE’s broadband imager was capable of detecting stellar CMEs—albeit with limited spectral (temperature) resolution—but that was not part of the observing plan. EUVE’s spectroscopic survey lacked sufficient sensitivity for CME detections. Optimizing modern instrument design for this task would make the observation fully feasible. In this work, we present a tool to explore the stellar-CME detection parameter space. Our tool shows that with an instrument with performance similar to ESCAPE, setting a 600 s integration period, and integrating the spectra into bands, any star with a X-ray flux ≥2.51 × 10−12 erg s−1 cm−2 should have a ≥3σ detection even for a modest few-percent dimming profile, regardless of ISM attenuation. Such measurements would be crucial for understanding the space weather environments of exoplanet host stars and, ultimately, for evaluating planetary habitability.

Keywords

QB460-466, Astronomy image processing, FOS: Physical sciences, Solar and Stellar Astrophysics, Stellar coronal mass ejections, Astrophysics, Extreme ultraviolet astronomy, Astronomical instrumentation, Solar and Stellar Astrophysics (astro-ph.SR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold
Related to Research communities