Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2025
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Observation-based Iterative Map for Solar Cycles. I. Nature of Solar Cycle Variability

Authors: Zi-Fan Wang; Jie Jiang; Jing-Xiu Wang;

Observation-based Iterative Map for Solar Cycles. I. Nature of Solar Cycle Variability

Abstract

Abstract Intercycle variations in the series of 11 yr solar activity cycles have a significant impact on both the space environment and climate. Whether solar cycle variability is dominated by deterministic chaos or stochastic perturbations remains an open question. Distinguishing between the two mechanisms is crucial for predicting solar cycles. Here we reduce the solar dynamo process responsible for the solar cycle to a one-dimensional iterative map, incorporating recent advances in the observed nonlinearity and stochasticity of the cycle. We demonstrate that deterministic chaos is absent in the nonlinear system, regardless of model parameters, if the generation of the poloidal field follows an increase-then-saturate pattern as the cycle strength increases. The synthesized solar cycles generated by the iterative map exhibit a probability density function (PDF) similar to that of observed normal cycles, supporting the dominant role of stochasticity in solar cycle variability. The parameters governing nonlinearity and stochasticity profoundly influence the PDF. The iterative map provides a quick and effective tool for predicting the range, including uncertainty, of the subsequent cycle strength when an ongoing cycle amplitude is known. Due to stochasticity, a solar cycle loses almost all its original information within one or two cycles. Although the simplicity of the iterative map, the behaviors it exhibits are generic for the nonlinear system. Our results provide guidelines for analyzing solar dynamo models in terms of chaos and stochasticity, highlight the limitations in predicting the solar cycle, and motivate further refinement of observational constraints on nonlinear and stochastic processes.

Keywords

QB460-466, Solar active regions, Astrophysics - Solar and Stellar Astrophysics, Solar magnetic fields, FOS: Physical sciences, Solar cycle, Astrophysics, Solar and Stellar Astrophysics (astro-ph.SR), Solar dynamo

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold
Related to Research communities