Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2023
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dwarf Galaxies with the Highest Concentration Are Not Thicker than Ordinary Dwarf Galaxies

Authors: Lijun Chen; Hong-Xin Zhang; Zesen Lin; Guangwen Chen; Bojun Tao; Zhixiong Liang; Zheyu Lin; +1 Authors

Dwarf Galaxies with the Highest Concentration Are Not Thicker than Ordinary Dwarf Galaxies

Abstract

Abstract The formation mechanism of high-concentration dwarf galaxies is still a mystery. We perform a comparative study of the intrinsic shape of nearby low-mass galaxies with different stellar concentration. The intrinsic shape is parameterized by the intermediate-to-major axis ratios B/A and the minor-to-major axis ratios C/A of triaxial ellipsoidal models. Our galaxies (107.5 M ⊙ < M ⋆ < 1010.0 M ⊙) are selected to have spectroscopic redshift from SDSS or GAMA and have broadband optical images from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) wide-layer survey. The deep HSC-SSP images allow to measure the apparent axis ratios q at galactic radii beyond the central star-forming area of our galaxies. We infer the intrinsic axis ratios based on the q distributions. We find that (1) our galaxies have typical intrinsic shape similarly close to be oblate (μ B/A ∼ 0.9–1), regardless of the concentration, stellar mass, star formation activity, and local environment (being central or satellite); (2) galaxies with the highest concentration tend to have intrinsic thickness similar to or (in virtually all cases) slightly thinner (i.e., smaller mean μ C/A or equivalently lower triaxiality) than ordinary galaxies, regardless of other properties explored here. This appears to be in contrast with the expectation of the classic merger scenario for high-concentration galaxies. Given the lack of a complete understanding of dwarf–dwarf merger, we cannot draw a definite conclusion about the relevance of mergers in the formation of high-concentration dwarfs. Other mechanisms such as halo spin may also play important roles in the formation of high-concentration dwarf galaxies.

Related Organizations
Keywords

QB460-466, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics, Astrophysics - Astrophysics of Galaxies, Dwarf galaxies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold