Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2023
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

ELVES. IV. The Satellite Stellar-to-halo Mass Relation Beyond the Milky Way

Authors: Shany Danieli; Jenny E. Greene; Scott Carlsten; Fangzhou Jiang; Rachael Beaton; Andy D. Goulding;

ELVES. IV. The Satellite Stellar-to-halo Mass Relation Beyond the Milky Way

Abstract

Abstract Quantifying the connection between galaxies and their host dark matter halos has been key for testing cosmological models on various scales. Below M ⋆ ∼ 109 M ⊙, such studies have primarily relied on the satellite galaxy population orbiting the Milky Way (MW). Here we present new constraints on the connection between satellite galaxies and their host dark matter subhalos using the largest sample of satellite galaxies in the Local Volume (D ≲ 12 Mpc) to date. We use 250 confirmed and 71 candidate dwarf satellites around 27 MW-like hosts from the Exploration of Local VolumE Satellites (ELVES) Survey and use the semianalytical SatGen model for predicting the population of dark matter subhalos expected in the same volume. Through a Bayesian model comparison of the observed and the forward-modeled satellite stellar mass functions (SSMFs), we infer the satellite stellar-to-halo mass relation. We find that the observed SSMF is best reproduced when subhalos at the low-mass end are populated by a relation of the form M ⋆ ∝ M peak α , with a moderate slope of α const = 2.10 ± 0.01 and a low scatter, constant as a function of the peak halo mass, of σ const = 0.06 − 0.05 + 0.07 . A model with a steeper slope (α grow = 2.39 ± 0.06) and a scatter that grows with decreasing M peak is also consistent with the observed SSMF but is not required. Our new model for the satellite–subhalo connection, based on hundreds of Local Volume satellite galaxies, is in line with what was previously derived using only MW satellites.

Keywords

Observational cosmology, QB460-466, Astrophysics of Galaxies (astro-ph.GA), Dark matter, FOS: Physical sciences, Scaling relations, Bayesian statistics, Astrophysics, Observational astronomy, Astrophysics - Astrophysics of Galaxies, Dwarf galaxies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Green
gold
Related to Research communities