
Light trans-iron elements such as Sr serve as the key to understanding the astrophysical sites of heavy elements. Spectroscopic studies of metal-poor stars have revealed large star-to-star scatters in the ratios of [Sr/Ba], which indicates that there are multiple sites for the production of Sr. Here we present the enrichment history of Sr by a series of the $N$-body/smoothed particle hydrodynamics simulations of a dwarf galaxy with a stellar mass of 3 $\times$ 10$^{6}$ $M_{\odot}$. We show that binary neutron star mergers (NSMs) and asymptotic giant branch (AGB) stars contribute to the enrichment of Sr in the metallicity ranges [Fe/H] $\gtrsim$ $-$3 and [Fe/H] $\gtrsim$ $-$1, respectively. It appears insufficient, however, to explain the overall observational trends of Sr by considering only these sites. We find that the models including electron-capture supernovae (ECSNe) and rotating massive stars (RMSs), in addition to NSMs and AGBs, reasonably reproduce the enrichment histories of Sr in dwarf galaxies. The contributions of both ECSNe and NSMs make scatters of $\approx$ 0.2 dex in [Sr/Fe], [Sr/Ba], and [Sr/Zn] as can be seen for observed stars in the metallicity range [Fe/H] $
19 pages, 10 figures, accepted for publication in The Astrophysical Journal
High Energy Astrophysical Phenomena (astro-ph.HE), Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Astrophysics of Galaxies, Solar and Stellar Astrophysics (astro-ph.SR)
High Energy Astrophysical Phenomena (astro-ph.HE), Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Astrophysics of Galaxies, Solar and Stellar Astrophysics (astro-ph.SR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
