
arXiv: 1806.08217
Abstract We implement a new semi-analytical approach to investigate radially self-similar solutions for the steady-state advection-dominated accretion flows (ADAFs). We employ the usual α-prescription for the viscosity, and all components of the energy–momentum tensor are considered. In this case, in the spherical coordinate, the problem reduces to a set of eighth-order, nonlinear differential equations with respect to the latitudinal angle θ. Using the Fourier expansions for all the flow quantities, we convert the governing differential equations to a large set of nonlinear algebraic equations for the Fourier coefficients. We solve the algebraic equations via the Newton–Raphson method, and investigate the ADAF properties over a wide range of model parameters. We also show that the implemented series are truly convergent. The main advantage of our numerical method is that it does not suffer from the usual technical restrictions that may arise for solving ADAF differential equations near the polar axis. In order to check the reliability of our approach, we recover some widely studied solutions. Further, we introduce a new varying α viscosity model. New outflow and inflow solutions for ADAFs are also presented, using Fourier expansion series.
High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
