
Abstract We derive analytic, closed form, numerically stable solutions for the total flux received from a spherical planet, moon, or star during an occultation if the specific intensity map of the body is expressed as a sum of spherical harmonics. Our expressions are valid to arbitrary degree and may be computed recursively for speed. The formalism we develop here applies to the computation of stellar transit light curves, planetary secondary eclipse light curves, and planet–planet/planet–moon occultation light curves, as well as thermal (rotational) phase curves. In this paper, we also introduce starry, an open-source package written in C++ and wrapped in Python that computes these light curves. The algorithm in starry is six orders of magnitude faster than direct numerical integration and several orders of magnitude more precise. starry also computes analytic derivatives of the light curves with respect to all input parameters for use in gradient-based optimization and inference, such as Hamiltonian Monte Carlo (HMC), allowing users to quickly and efficiently fit observed light curves to infer properties of a celestial body’s surface map. (Please see https://github.com/rodluger/starry, https://rodluger.github.io/starry/, and https://doi.org/10.5281/zenodo.1312286).
Earth and Planetary Astrophysics (astro-ph.EP), Astrophysics - Solar and Stellar Astrophysics, 530 Physics, 520 Astronomy, FOS: Physical sciences, 500 Science, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), Solar and Stellar Astrophysics (astro-ph.SR), Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), Astrophysics - Solar and Stellar Astrophysics, 530 Physics, 520 Astronomy, FOS: Physical sciences, 500 Science, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), Solar and Stellar Astrophysics (astro-ph.SR), Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 285 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
