
Dynamics of an elongated droplet under the action of a rotating magnetic field is considered by mathematical modelling. The actual shape of a droplet is obtained by solving the initial-boundary value problem of a nonlinear singularly perturbed partial differential equation (PDE). For the discretization in space the finite difference scheme (FDS) is applied. Time evolution of numerical solutions is obtained with MATLAB by solving a large system of ordinary differential equations (ODE).
finite differences, QA1-939, magnetic field, ill posed problem, Mathematics
finite differences, QA1-939, magnetic field, ill posed problem, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
