Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Symmetry, Integrabil...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY SA
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Doubly Exotic Nth-Order Superintegrable Classical Systems Separating in Cartesian Coordinates

Doubly exotic \(N\)th-order superintegrable classical systems separating in Cartesian coordinates
Authors: Yurduşen, İsmet; Escobar-Ruiz, Adrián Mauricio; Palma y Meza Montoya, Irlanda;

Doubly Exotic Nth-Order Superintegrable Classical Systems Separating in Cartesian Coordinates

Abstract

Superintegrable classical Hamiltonian systems in two-dimensional Euclidean space $E_2$ are explored. The study is restricted to Hamiltonians allowing separation of variables $V(x,y)=V_1(x)+V_2(y)$ in Cartesian coordinates. In particular, the Hamiltonian $\mathcal H$ admits a polynomial integral of order $N>2$. Only doubly exotic potentials are considered. These are potentials where none of their separated parts obey any linear ordinary differential equation. An improved procedure to calculate these higher-order superintegrable systems is described in detail. The two basic building blocks of the formalism are non-linear compatibility conditions and the algebra of the integrals of motion. The case $N=5$, where doubly exotic confining potentials appear for the first time, is completely solved to illustrate the present approach. The general case $N>2$ and a formulation of inverse problem in superintegrability are briefly discussed as well.

Keywords

Nonlinear Sciences - Exactly Solvable and Integrable Systems, separation of variables, FOS: Physical sciences, Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics, Mathematical Physics (math-ph), exotic potentials, higher-order superintegrability, Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics, integrability in classical mechanics, Exactly Solvable and Integrable Systems (nlin.SI), Higher-order theories for problems in Hamiltonian and Lagrangian mechanics, Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold