
doi: 10.3791/65555
pmid: 37395567
The choroid plexus (ChP) serves as a critical gateway for immune cell infiltration into the central nervous system (CNS) under both physiological and pathological conditions. Recent research has shown that regulating ChP activity may offer protection against CNS disorders. However, studying the biological function of the ChP without affecting other brain regions is challenging due to its delicate structure. This study presents a novel method for gene knockdown in ChP tissue using adeno-associated viruses (AAVs) or cyclization recombination enzyme (Cre) recombinase protein consisting of TAT sequence (CRE-TAT). The results demonstrate that after injecting AAV or CRE-TAT into the lateral ventricle, the fluorescence was exclusively concentrated in the ChP. Using this approach, the study successfully knocked down the adenosine A2A receptor (A2AR) in the ChP using RNA interference (RNAi) or Cre/locus of X-overP1 (Cre/LoxP) systems, and showed that this knockdown could alleviate the pathology of experimental autoimmune encephalomyelitis (EAE). This technique may have important implications for future research on the ChP's role in CNS disorders.
Central Nervous System, Encephalomyelitis, Autoimmune, Experimental, Choroid Plexus, Animals, Humans, Brain
Central Nervous System, Encephalomyelitis, Autoimmune, Experimental, Choroid Plexus, Animals, Humans, Brain
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
