Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantification of Immunostained Caspase-9 in Retinal Tissue

Authors: Crystal K, Colón Ortiz; Anna M, Potenski; Kendra V, Johnson; Claire W, Chen; Scott J, Snipas; Ying Y, Jean; Maria I, Avrutsky; +1 Authors

Quantification of Immunostained Caspase-9 in Retinal Tissue

Abstract

The family of caspases is known to mediate many cellular pathways beyond cell death, including cell differentiation, axonal pathfinding, and proliferation. Since the identification of the family of cell death proteases, there has been a search for tools to identify and expand the function of specific family members in development, health, and disease states. However, many of the currently commercially available caspase tools that are widely used are not specific for the targeted caspase. In this report, we delineate the approach we have used to identify, validate, and target caspase-9 in the nervous system using a novel inhibitor and genetic approaches with immunohistochemical read-outs. Specifically, we used the retinal neuronal tissue as a model to identify and validate the presence and function of caspases. This approach enables the interrogation of cell-type specific apoptotic and non-apoptotic caspase-9 functions and can be applied to other complex tissues and caspases of interest. Understanding the functions of caspases can help to expand current knowledge in cell biology, and can also be advantageous to identify potential therapeutic targets due to their involvement in disease.

Keywords

Caspase 3, Caspases, Apoptosis, Cell Differentiation, Nervous System, Caspase 9, Retina

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!