Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Visualize...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Visualized Experiments
Article . 2018 . Peer-reviewed
Data sources: Crossref
Journal of Visualized Experiments
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Detection of Tilapia Lake Virus Using Conventional RT-PCR and SYBR Green RT-qPCR

Authors: Pamela, Nicholson; Pattarasuda, Rawiwan; Win, Surachetpong;

Detection of Tilapia Lake Virus Using Conventional RT-PCR and SYBR Green RT-qPCR

Abstract

The aim of this method is to facilitate the fast, sensitive and specific detection of Tilapia Lake Virus (TiLV) in tilapia tissues. This protocol can be used as part of surveillance programs, biosecurity measures and in TiLV basic research laboratories. The gold standard of virus diagnostics typically involves virus isolation followed by complementary techniques such as reverse-transcription polymerase chain reaction (RT-PCR) for further verification. This can be cumbersome, time-consuming and typically requires tissue samples heavily infected with virus. The use of RT-quantitative (q)PCR in the detection of viruses is advantageous because of its quantitative nature, high sensitivity, specificity, scalability and its rapid time to result. Here, the entire method of PCR based approaches for TiLV detection is described, from tilapia organ sectioning, total ribonucleic acid (RNA) extraction using a guanidium thiocyanate-phenol-chloroform solution, RNA quantification, followed by a two-step PCR protocol entailing, complementary deoxyribonucleic acid (cDNA) synthesis and detection of TiLV by either conventional PCR or quantitative identification via qPCR using SYBR green I dye. Conventional PCR requires post-PCR steps and will simply inform about the presence of the virus. The latter approach will allow for absolute quantification of TiLV down to as little as 2 copies and thus is exceptionally useful for TiLV diagnosis in sub-clinical cases. A detailed description of the two PCR approaches, representative results from two laboratories and a thorough discussion of the critical parameters of both have been included to ensure that researchers and diagnosticians find their most suitable and applicable method of TiLV detection.

Related Organizations
Keywords

Time Factors, Reverse Transcriptase Polymerase Chain Reaction, Diamines, Sensitivity and Specificity, Fish Diseases, Viruses, Quinolines, Animals, Humans, Benzothiazoles, Organic Chemicals, Tilapia

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average
bronze