
Autophagy is a lysosomal degradation pathway essential for cell homeostasis, function and differentiation. Under stress conditions, autophagy is induced and targets various cargos, such as bulk cytosol, damaged organelles and misfolded proteins, for degradation in lysosomes. Resulting nutrient molecules are recycled back to the cytosol for new protein synthesis and ATP production. Upregulation of autophagy has beneficial effects against the pathogenesis of many diseases, and pharmacological and physiological strategies to activate autophagy have been reported. Aerobic exercise is recently identified as an efficient autophagy inducer in multiple organs in mice, including muscle, liver, heart and brain. Here we show procedures to induce autophagy in vivo by either forced treadmill exercise or voluntary wheel running. We also demonstrate microscopic and biochemical methods to quantitatively analyze autophagy levels in mouse tissues, using the marker proteins LC3 and p62 that are transported to and degraded in lysosomes along with autophagosomes.
Mice, Inbred C57BL, Organelles, Mice, Physical Conditioning, Animal, Blotting, Western, Models, Animal, Autophagy, Animals, Lysosomes
Mice, Inbred C57BL, Organelles, Mice, Physical Conditioning, Animal, Blotting, Western, Models, Animal, Autophagy, Animals, Lysosomes
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
