Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Visualize...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
License: CC BY NC ND
Data sources: PubMed Central
Journal of Visualized Experiments
Article . 2011 . Peer-reviewed
Data sources: Crossref
Journal of Visualized Experiments
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

Preparation of Quality Inositol Pyrophosphates

Authors: Loss, Omar; Azevedo, Cristina; Szijgyarto, Zsolt; Bosch, Daniel; Saiardi, Adolfo;

Preparation of Quality Inositol Pyrophosphates

Abstract

Myo-inositol is present in nature either unmodified or in more complex phosphorylated derivates. Of the latest, the two most abundant in eukaryotic cells are inositol pentakisphosphate (IP(5;)) and inositol hexakisphosphate (phytic acid or IP(6;)). IP(5;) and IP(6;) are the precursors of inositol pyrophosphate molecules that contain one or more pyrophosphate bonds(1). Phosphorylation of IP(6;) generates diphoshoinositolpentakisphosphate (IP(7;) or PP-IP(5;)) and bisdiphoshoinositoltetrakisphosphate (IP(8;) or (PP)(2;)-IP(4;)). Inositol pyrophosphates have been isolated from all eukaryotic organisms so far studied. In addition, the two distinct classes of enzymes responsible for inositol pyrophosphate synthesis are highly conserved throughout evolution(2-4). The IP(6;) kinases (IP(6;)Ks) posses an enormous catalytic flexibility, converting IP(5;) and IP(6;) to PP-IP(4;) and IP(7;) respectively and subsequently, by using these products as substrates, promote the generation of more complex molecules(5,6). Recently, a second class of pyrophosphate generating enzymes was identified in the form of the yeast protein VIP(1;) (also referred as PP-IP(5;)K), which is able to convert IP(6;) to IP(7;) and IP(8;)(7,8). Inositol pyrophosphates regulate many disparate cellular processes such as insulin secretion(9), telomere length(10,11), chemotaxis(12), vesicular trafficking(13), phosphate homeostasis(14) and HIV-1 gag release(15). Two mechanisms of actions have been proposed for this class of molecules. They can affect cellular function by allosterically interacting with specific proteins like AKT(16). Alternatively, the pyrophosphate group can donate a phosphate to pre-phosphorylated proteins(17). The enormous potential of this research field is hampered by the absence of a commercial source of inositol pyrophosphates, which is preventing many scientists from studying these molecules and this new post-translational modification. The methods currently available to isolate inositol pyrophosphates require sophisticated chromatographic apparatus(18,19). These procedures use acidic conditions that might lead to inositol pyrophosphate degradation(20) and thus to poor recovery. Furthermore, the cumbersome post-column desalting procedures restrict their use to specialized laboratories. In this study we describe an undemanding method for the generation, isolation and purification of the products of the IP(6;)-kinase and PP-IP(5;)-kinases reactions. This method was possible by the ability of polyacrylamide gel electrophoresis (PAGE) to resolve highly phosphorylated inositol polyphosphates(20). Following IP(6;)K1 and PP-IP(5;)K enzymatic reactions using IP(6;) as the substrate, PAGE was used to separate the generated inositol pyrophosphates that were subsequently eluted in water.

Keywords

Phosphotransferases (Phosphate Group Acceptor), Inositol Phosphates, Escherichia coli, Electrophoresis, Polyacrylamide Gel, Phosphorylation, Molecular Biology, Inositol

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green
bronze