Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Academy of Audiology
Article . 2019 . Peer-reviewed
Data sources: Crossref
Journal of the American Academy of Audiology
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Auditory Brainstem Responses in Children with Auditory Processing Disorder

Authors: Ankmnal-Veeranna, Sangamanatha; Allan, Chris; Allen, Prudence;

Auditory Brainstem Responses in Children with Auditory Processing Disorder

Abstract

Background:The ASHA recommends including electrophysiological measures in an auditory processing disorder (APD) assessment battery, but few audiologists do so, potentially because of limited published evidence for its utility.Purpose:This study compared the auditory brainstem responses (ABRs) of children with APD with age-matched children and adults.Study Sample:This study retrospectively examined the records of 108 children suspected of APD (sAPD) who had click-evoked ABRs recorded as part of their clinical assessment. Twenty adults and 22 typically developing (TD) children were recruited as controls.Data collection and Analysis:Click-evoked ABRs were recorded at slow (13.3 clicks/sec) and faster (57.7 clicks/sec) stimulation rates. ABRs were analyzed using typical clinical measures (latencies and interpeak intervals for waves I, III, and V) and using a model proposed by Ponton et al that offered a more detailed analysis of axonal conduction time and synaptic transmission delay.Results:Both clinical measures and the Ponton model analysis showed no significant differences between TD children and adults. Children sAPD showed absolute latencies that were significantly prolonged when compared with adults but not when compared with TD children. But individual children sAPD showed clinically significant delays (>2 standard deviations of TD children’s data). Examination of responses delineating axonal versus synaptic transmission showed significant delays in synaptic transmission in the group of children sAPD in comparison to TD children and adults. These results suggest that a significant portion of children with listening difficulties showed evidence of reduced or atypical brainstem functioning. Examining the responses for axonal and synaptic delays revealed evidence of a synaptic pattern of abnormalities in a significant portion (37.03%) of children sAPD. Such observations could provide objective evidence of factors potentially contributing to listening difficulties that are frequently reported in children identified with APD.Conclusions:Children sAPD often showed abnormalities in the ABR, suggesting a neurophysiologic origin of their reported difficulties, frequently originating at or before the first synapse. This study provides supportive evidence for the value of click-evoked ABRs in comprehensive auditory processing assessment batteries.

Country
Canada
Related Organizations
Keywords

Adult, Adolescent, Auditory Perceptual Disorders, 610, Communication Sciences and Disorders, Auditory processing disorder, 618, Synaptic transmission time, Young Adult, Child, Preschool, Evoked Potentials, Auditory, Brain Stem, Humans, Click-evoked ABR, Child, Axonal conduction time, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green
bronze