
There has been much research on data mining techniques for applying more advanced applications. However, most of those techniques has focused on transaction data rather than time series data. In this paper, we introduce a approach to convert time series data into virtual transaction data for more useful data mining applications. A virtual transaction is defined to be a collection of events that occur relatively close to each other. A virtual transaction generator uses time window or event window methods. Our approach based on time series data can be used with most conventional transaction algorithms without further modification.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
