<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract —Secure routing is vital to the acceptance and use of Wireless Sensor Networks (WSN) for many applications. However, providing secure routing in WSNs is a challenging task due to the inherently constrained capabilities of sensor nodes. Although a wide variety of routing protocols have been proposed for WSNs, most do not take security into account as a main goal. Routing attacks can have devastating effects on WSNs and present a major challenge when designing robust security mechanisms for WSNs. In this paper, we examine some of the most common routing attacks in WSNs. In particular, we focus on the wormhole routing attack in some detail. A variety of countermeasures have been proposed in the literature for such attacks. However, most of these countermeasures suffer from flaws that essentially render them ineffective for use in large scale WSN deployments. Due to the inherent constraints found in WSNs, there is a need for lightweight and robust security mechanisms. The examination of the wormhole routing attack and some of the proposed countermeasures makes it evident that it is extremely difficult to retrofit existing protocols with defenses against routing attacks. It is suggested that one of the ways to approach this rich field of research problems in WSNs could be to carefully design new routing protocols in which attacks such as wormholes can be rendered meaningless.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |