
Real-world applications depend heavily on the fixed-point solution. In this paper, we have suggested an effective iterative method for fixed points. We have first given the approximate order of convergence for this method using Taylor’s series. The radii of convergence balls for this method can then be calculated using a local convergence theorem that we then present. The semilocal convergence theorem, which determines the starting point’s accuracy, is then presented. We have created some technical lemmas and theorems to serve this purpose. In contrast to an earlier study using the same type of method for nonlinear equations, we have not used the convergence conditions on higher-order Frechet derivatives in our study of convergence. Finally, some numerical examples are provided to support the theoretical findings we made. This highlights the uniqueness of this study.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
