
pmid: 24822443
Metal-organic frameworks (MOFs) are a class of crystalline materials built from organic binding ligands and metal ions through self-assembly. Currently, MOFs have drawn a growing interest among the scientific teams of various fields. Compared with conventional inorganic porous materials, MOFs possess larger specific surface areas, higher porosity and diversity of structures and functions, thus many potential applications have been proposed in the domains of gas adsorption and separation, sensors, drug delivery, catalysis or others. The combinations of MOFs and other materials such as graphene oxide, magnetic nanoparticles have obvious advantages in adsorption and separation. The appearance of novel materials greatly promotes interdisciplinary developments such as organic chemistry, inorganic chemistry, coordination chemistry, materials chemistry, life science and computer science. This article reviews the progress of MOFs in recent years, including the characteristics of MOFs, advances at home and abroad, applications, central issues of compound MOFs and the prospects in the future.
Metals, Adsorption, Organic Chemicals, Porosity, Catalysis
Metals, Adsorption, Organic Chemicals, Porosity, Catalysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
