
arXiv: 1904.06283
We consider the involutions known as toggles, which have been used to give simplified proofs of the fundamental properties of the promotion and evacuation maps. We transfer these involutions so that they generate a group $\mathscr P_n$ that acts on the set $S_n$ of permutations of $\{1,\ldots,n\}$. After characterizing its orbits in terms of permutation skeletons, we apply the action in order to understand West's stack-sorting map. We obtain a very simple proof of a result that clarifies and extensively generalizes a theorem of Bouvel and Guibert and also generalizes a theorem of Bousquet-M\'elou. We also settle a conjecture of Bouvel and Guibert. We prove a result related to the recently-introduced notion of postorder Wilf equivalence. Finally, we investigate an interesting connection among the action of $\mathscr P_n$ on $S_n$, the group structure of $S_n$, and the stack-sorting map.
Group actions on combinatorial structures, Permutations, words, matrices, rooted plane trees, 05A05, 05E18, 05A19, Combinatorial aspects of representation theory, polyurethane group, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Combinatorial identities, bijective combinatorics
Group actions on combinatorial structures, Permutations, words, matrices, rooted plane trees, 05A05, 05E18, 05A19, Combinatorial aspects of representation theory, polyurethane group, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Combinatorial identities, bijective combinatorics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
