
We define a family of combinatorial objects, which we call Baxter posets. We prove that Baxter posets are counted by the Baxter numbers by showing that they are the adjacency posets of diagonal rectangulations. Given a diagonal rectangulation, we describe the cover relations in the associated Baxter poset. Given a Baxter poset, we describe a method for obtaining the associated Baxter permutation and the associated twisted Baxter permutation.
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
