
doi: 10.37236/699
We present an $O(n^2)$-time algorithm for calculating the genus distribution of any 4-regular outerplanar graph. We characterize such graphs in terms of what we call split graphs and incidence trees. The algorithm uses post-order traversal of the incidence tree and productions that are adapted from a previous paper that analyzes double-root vertex-amalgamations and self-amalgamations.
split graphs, incidence trees, Planar graphs; geometric and topological aspects of graph theory, Trees
split graphs, incidence trees, Planar graphs; geometric and topological aspects of graph theory, Trees
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
