
We provide new examples of Cayley graphs on which the quantum walks reach uniform mixing. Our first result is a complete characterization of all $2(d+2)$-regular Cayley graphs over $\mathbb{Z}_3^d$ that admit uniform mixing at time $2\pi/9$. Our second result shows that for every integer $k\ge 3$, we can construct Cayley graphs over $\mathbb{Z}_q^d$ that admit uniform mixing at time $2\pi/q^k$, where $q=3, 4$.We also find the first family of irregular graphs, the Cartesian powers of the star $K_{1,3}$, that admit uniform mixing.
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
