
doi: 10.37236/5465
arXiv: 1504.08146
An undirected simple graph $G=(V,E)$ is called antimagic if there exists an injective function $f:E\rightarrow\{1,\dots,|E|\}$ such that $\sum_{e\in E(u)} f(e)\neq\sum_{e\in E(v)} f(e)$ for any pair of different nodes $u,v\in V$. In this note we prove — with a slight modification of an argument of Cranston et al. — that $k$-regular graphs are antimagic for $k\ge 2$. A corrigendum was added to this paper on May 2, 2019.
Graph labelling (graceful graphs, bandwidth, etc.), QA Mathematics / matematika, antimagic labeling, regular graphs, Mathematics - Combinatorics, Computer Science - Discrete Mathematics
Graph labelling (graceful graphs, bandwidth, etc.), QA Mathematics / matematika, antimagic labeling, regular graphs, Mathematics - Combinatorics, Computer Science - Discrete Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
