
arXiv: 1402.2995
Let $G$ be a graph with $n$ vertices. We denote the largest signless Laplacian eigenvalue of $G$ by $q_1(G)$ and Laplacian eigenvalues of $G$ by $\mu_1(G)\ge\cdots\ge\mu_{n-1}(G)\ge\mu_n(G)=0$. It is a conjecture on Laplacian spread of graphs that $\mu_1(G)-\mu_{n-1}(G)\le n-1$ or equivalently $\mu_1(G)+\mu_1(\overline G)\le2n-1$. We prove the conjecture for bipartite graphs. Also we show that for any bipartite graph $G$, $\mu_1(G)\mu_1(\overline G)\le n(n-1)$. Aouchiche and Hansen [Discrete Appl. Math. 2013] conjectured that $q_1(G)+q_1(\overline G)\le3n-4$ and $q_1(G)q_1(\overline G)\le2n(n-2)$. We prove the former and disprove the latter by constructing a family of graphs $H_n$ where $q_1(H_n)q_1(\overline{H_n})$ is about $2.15n^2+O(n)$.
Laplacian eigenvalues of graphs, Laplacian spread, Graphs and linear algebra (matrices, eigenvalues, etc.), signless Laplacian eigenvalues of graphs, FOS: Mathematics, Nordhaus-Gaddum-type inequalities, Mathematics - Combinatorics, Combinatorics (math.CO), 05C50
Laplacian eigenvalues of graphs, Laplacian spread, Graphs and linear algebra (matrices, eigenvalues, etc.), signless Laplacian eigenvalues of graphs, FOS: Mathematics, Nordhaus-Gaddum-type inequalities, Mathematics - Combinatorics, Combinatorics (math.CO), 05C50
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
