Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronic Journal of Combinatorics
Article . 2014 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronic Journal of Combinatorics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2014
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2012
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Minimum-Weight Edge Discriminators in Hypergraphs

Minimum-weight edge discriminators in hypergraphs
Authors: Bhattacharya, Bhaswar B; Das, Sayantan; Ganguly, Shirshendu;

Minimum-Weight Edge Discriminators in Hypergraphs

Abstract

In this paper we introduce the notion of minimum-weight edge-discriminators in hypergraphs, and study their various properties. For a hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, a function $\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\}$ is said to be an edge-discriminator on $\mathcal H$ if $\sum_{v\in E_i}{\lambda(v)}>0$, for all hyperedges $E_i\in \mathscr E$, and $\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}$, for every two distinct hyperedges $E_i, E_j \in \mathscr E$. An optimal edge-discriminator on $\mathcal H$, to be denoted by $\lambda_\mathcal H$, is an edge-discriminator on $\mathcal H$ satisfying $\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}$, where the minimum is taken over all edge-discriminators on $\mathcal H$. We prove that any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, with $|\mathscr E|=m$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq m(m+1)/2$, and the equality holds if and only if the elements of $\mathscr E$ are mutually disjoint. For $r$-uniform hypergraphs $\mathcal H=(\mathcal V, \mathscr E)$, it follows from earlier results on Sidon sequences that $\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1})$, and the bound is attained up to a constant factor by the complete $r$-uniform hypergraph. Finally, we show that no optimal edge-discriminator on any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, with $|\mathscr E|=m~(\geq 3)$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=m(m+1)/2-1$. This shows that all integer values between $m$ and $m(m+1)/2$ cannot be the weight of an optimal edge-discriminator of a hypergraph, and this raises many other interesting combinatorial questions.

Country
United States
Related Organizations
Keywords

Combinatorial optimization, irregular network, 511, graph labeling, Hypergraphs, Graph labeling, Graph labelling (graceful graphs, bandwidth, etc.), hypergraphs, Physical Sciences and Mathematics, FOS: Mathematics, 05C65, 05C78, 05C38, 90C27, Mathematics - Combinatorics, Edge discrimination, Irregular networks, Combinatorics (math.CO), Paths and cycles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold