
In this paper we introduce the notion of minimum-weight edge-discriminators in hypergraphs, and study their various properties. For a hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, a function $\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\}$ is said to be an edge-discriminator on $\mathcal H$ if $\sum_{v\in E_i}{\lambda(v)}>0$, for all hyperedges $E_i\in \mathscr E$, and $\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}$, for every two distinct hyperedges $E_i, E_j \in \mathscr E$. An optimal edge-discriminator on $\mathcal H$, to be denoted by $\lambda_\mathcal H$, is an edge-discriminator on $\mathcal H$ satisfying $\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}$, where the minimum is taken over all edge-discriminators on $\mathcal H$. We prove that any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, with $|\mathscr E|=m$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq m(m+1)/2$, and the equality holds if and only if the elements of $\mathscr E$ are mutually disjoint. For $r$-uniform hypergraphs $\mathcal H=(\mathcal V, \mathscr E)$, it follows from earlier results on Sidon sequences that $\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1})$, and the bound is attained up to a constant factor by the complete $r$-uniform hypergraph. Finally, we show that no optimal edge-discriminator on any hypergraph $\mathcal H=(\mathcal V, \mathscr E)$, with $|\mathscr E|=m~(\geq 3)$, satisfies $\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=m(m+1)/2-1$. This shows that all integer values between $m$ and $m(m+1)/2$ cannot be the weight of an optimal edge-discriminator of a hypergraph, and this raises many other interesting combinatorial questions.
Combinatorial optimization, irregular network, 511, graph labeling, Hypergraphs, Graph labeling, Graph labelling (graceful graphs, bandwidth, etc.), hypergraphs, Physical Sciences and Mathematics, FOS: Mathematics, 05C65, 05C78, 05C38, 90C27, Mathematics - Combinatorics, Edge discrimination, Irregular networks, Combinatorics (math.CO), Paths and cycles
Combinatorial optimization, irregular network, 511, graph labeling, Hypergraphs, Graph labeling, Graph labelling (graceful graphs, bandwidth, etc.), hypergraphs, Physical Sciences and Mathematics, FOS: Mathematics, 05C65, 05C78, 05C38, 90C27, Mathematics - Combinatorics, Edge discrimination, Irregular networks, Combinatorics (math.CO), Paths and cycles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
