Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronic Journal of Combinatorics
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2013
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2012
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stirling Numbers of Forests and Cycles

Stirling numbers of forests and cycles
Authors: David J. Galvin; Do Trong Thanh;

Stirling Numbers of Forests and Cycles

Abstract

For a graph $G$ and a positive integer $k$, the graphical Stirling number $S(G,k)$ is the number of partitions of the vertex set of $G$ into $k$ non-empty independent sets. Equivalently it is the number of proper colorings of $G$ that use exactly $k$ colors, with two colorings identified if they differ only on the names of the colors. If $G$ is the empty graph on $n$ vertices then $S(G,k)$ reduces to $S(n,k)$, the familiar Stirling number of the second kind.In this note we first consider Stirling numbers of forests. We show that if $(F^{c(n)}_n)_{n\geq 0}$ is any sequence of forests with $F^{c(n)}_n$ having $n$ vertices and $c(n)=o(\sqrt{n/\log n})$ components, and if $X^{c(n)}_n$ is a random variable that takes value $k$ with probability proportional to $S(F^{c(n)}_n,k)$ (that is, $X^{c(n)}_n$ is the number of classes in a uniformly chosen partition of $F^{c(n)}_n$ into non-empty independent sets), then $X^{c(n)}_n$ is asymptotically normal, meaning that suitably normalized it tends in distribution to the standard normal. This generalizes a seminal result of Harper on the ordinary Stirling numbers. Along the way we give recurrences for calculating the generating functions of the sequences $(S(F^c_n,k))_{k \geq 0}$, show that these functions have all real zeroes, and exhibit three different interlacing patterns between the zeroes of pairs of consecutive generating functions.We next consider Stirling numbers of cycles. We establish asymptotic normality for the number of classes in a uniformly chosen partition of $C_n$ (the cycle on $n$ vertices) into non-empty independent sets. We give a recurrence for calculating the generating function of the sequence $(S(C_n,k))_{k \geq 0}$, and use this to give a direct proof of a log-concavity result that had previously only been arrived at in a very indirect way.

Related Organizations
Keywords

asymptotic normality, Bell and Stirling numbers, graphical Stirling number, Stirling number, Enumeration in graph theory, independent set, Coloring of graphs and hypergraphs, 05C15, FOS: Mathematics, Mathematics - Combinatorics, Bell number, Combinatorics (math.CO), chromatic vector

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Top 10%
Top 10%
Green
gold