Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronic Journal of Combinatorics
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2012
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identifying Vertex Covers in Graphs

Identifying vertex covers in graphs
Authors: Henning, Michael A.; Yeo, Anders;

Identifying Vertex Covers in Graphs

Abstract

An identifying vertex cover in a graph $G$ is a subset $T$ of vertices in $G$ that has a nonempty intersection with every edge of $G$ such that $T$ distinguishes the edges, that is, $e \cap T \ne \emptyset$ for every edge $e$ in $G$ and $e \cap T \ne f \cap T$ for every two distinct edges $e$ and $f$ in $G$. The identifying vertex cover number $\tau_D(G)$ of $G$ is the minimum size of an identifying vertex cover in $G$. We observe that $\tau_D(G) + \rho(G) = |V(G)|$, where $\rho(G)$ denotes the packing number of $G$. We conjecture that if $G$ is a graph of order $n$ and size $m$ with maximum degree $\Delta$, then $\tau_D(G) \le \left( \frac{\Delta(\Delta - 1)}{\Delta^2 + 1} \right) n + \left( \frac{2}{\Delta^2 + 1} \right) m$. If the conjecture is true, then the bound is best possible for all $\Delta \ge 1$. We prove this conjecture when $\Delta \ge 1$ and $G$ is a $\Delta$-regular graph. The three known Moore graphs of diameter two, namely the $5$-cycle, the Petersen graph and the Hoffman-Singleton graph, are examples of regular graphs that achieves equality in the upper bound. We also prove this conjecture when $\Delta \in \{2,3\}$.

Related Organizations
Keywords

Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), transversal, Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.), Transversal (matching) theory, identifying vertex cover, vertex cover

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold