
We define an algorithm $k$ which takes a connected graph $G$ on a totally ordered vertex set and returns an increasing tree $R$ (which is not necessarily a subtree of $G$). We characterize the set of graphs $G$ such that $k(G)=R$. Because this set has a simple structure (it is isomorphic to a product of non-empty power sets), it is easy to evaluate certain graph invariants in terms of increasing trees. In particular, we prove that, up to sign, the coefficient of $x^q$ in the chromatic polynomial $\chi_G(x)$ is the number of increasing forests with $q$ components that satisfy a condition that we call $G$-connectedness. We also find a bijection between increasing $G$-connected trees and broken circuit free subtrees of $G$.
05C30, 05C05, FOS: Mathematics, Mathematics - Combinatorics, Structural characterization of families of graphs, chromatic polynomial, Combinatorics (math.CO), graph invariants, Enumeration in graph theory, Trees, tree
05C30, 05C05, FOS: Mathematics, Mathematics - Combinatorics, Structural characterization of families of graphs, chromatic polynomial, Combinatorics (math.CO), graph invariants, Enumeration in graph theory, Trees, tree
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
