
doi: 10.37236/1779
A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings, i.e., proper colorings in which every two color classes induce a forest. We show that every acyclic $k$-coloring can be refined to a star coloring with at most $(2k^2-k)$ colors. Similarly, we prove that planar graphs have star colorings with at most 20 colors and we exhibit a planar graph which requires 10 colors. We prove several other structural and topological results for star colorings, such as: cubic graphs are $7$-colorable, and planar graphs of girth at least $7$ are $9$-colorable. We provide a short proof of the result of Fertin, Raspaud, and Reed that graphs with tree-width $t$ can be star colored with ${t+2\choose2}$ colors, and we show that this is best possible.
Coloring of graphs and hypergraphs, acyclic colorings, star coloring, coloring
Coloring of graphs and hypergraphs, acyclic colorings, star coloring, coloring
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 113 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
