Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronic Journal of Combinatorics
Article . 2025 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
St Andrews Research Repository
Article . 2025 . Peer-reviewed
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Order Sequence of a Group

On the order sequence of a group
Authors: Cameron, Peter J.; Dey, Hiranya Kishore;

On the Order Sequence of a Group

Abstract

This paper provides a bridge between two active areas of research, the spectrum (set of element orders) and the power graph of a finite group. The order sequence of a finite group $G$ is the list of orders of elements of the group, arranged in non-decreasing order. Order sequences of groups of order $n$ are ordered by elementwise domination, forming apartially ordered set. We prove a number of results about this poset, among them the following.1. M. Amiri recently proved that the poset has a unique maximal element, corresponding to the cyclic group.We show that the product of orders in a cyclic group of order $n$ is at least $q^{\phi(n)}$ times as large as the product in any non-cyclic group, where $q$ is the smallest prime divisor of $n$ and $\phi$ is Euler's function,with a similar result for the sum.2. The poset of order sequences of abelian groups of order $p^n$ is naturally isomorphic to the (well-studied) poset of partitions of $n$ with its natural partial order.3. If there exists a non-nilpotent group of order $n$, then there exists such a group whose order sequence is dominated by the order sequence of any nilpotent group of order $n$.4. There is a product operation on finite ordered sequences, defined by forming all products and sorting them into non-decreasing order. The product of order sequences of groups $G$ and $H$ is the order sequence of agroup if and only if $|G|$ and $|H|$ are coprime. The paper concludes with a number of open problems.

Related Organizations
Keywords

Q Science, finite abelian groups, Mathematics(all), Extensions, wreath products, and other compositions of groups, 20D15, 20D60, 20E22, 05E16, Q, nilpotent groups, Group Theory (math.GR), 3rd-NDAS, Combinatorial aspects of groups and algebras, Order sequence, Extension, Combinatorics, Finite nilpotent groups, \(p\)-groups, Group Theory, Partitions of integer, FOS: Mathematics, sum of elements of a finite group, Combinatorics (math.CO), Arithmetic and combinatorial problems involving abstract finite groups, Nilpotent group

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Related to Research communities