Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronic Journal of Combinatorics
Article . 2025 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Graphs of Bounded Chordality

Authors: Chaniotis, Aristotelis; Miraftab, Babak; Spirkl, Sophie;

Graphs of Bounded Chordality

Abstract

 A hole in a graph is an induced subgraph which is a cycle of length at least four. A graph is chordal if it contains no holes. Following McKee and Scheinerman (1993), we define the chordality of a graph $G$ to be the minimum number of chordal graphs on $V(G)$ such that the intersection of their edge sets is equal to $E(G)$. In this paper we study classes of graphs of bounded chordality.In the 1970s, Buneman, Gavril, and Walter, proved independently that chordal graphs are exactly the intersection graphs of subtrees in trees. We generalize this result by proving that the graphs of chordality at most $k$ are exactly the intersection graphs of convex subgraphs of median graphs of tree-dimension$k$.A hereditary class of graphs $\mathcal{A}$ is $\chi$-bounded if there exists a function $ f\colon \mathbb{N}\rightarrow \mathbb{R}$ such that for every graph $G\in \mathcal{A}$, we have $\chi(G) \leq f(\omega(G))$. In 1960, Asplund and Grünbaum proved that the class of all graphs of boxicity at most two is $\chi$-bounded. In his seminal paper "Problems from the world surrounding perfect graphs," Gyárfás (1985), motivated by the above result, asked whether the class of all graphs of chordality at most two, which we denote by $\mathcal{C}\,{\mathop{\cap}\limits_{\raise.2ex\hbox{$\scriptstyle\bullet$}}}\,\mathcal{C}$, is $\chi$-bounded. We discuss a result of Felsner, Joret, Micek, Trotter and Wiechert (2017), concerning tree-decompositions of Burling graphs, which implies an answer to Gyárfás' question in the negative. We prove that two natural families of subclasses of $\mathcal{C}\,{\mathop{\cap}\limits_{\bullet}}\,\mathcal{C}$ are polynomially $\chi$-bounded.Finally, we prove that for every $k\geq 3$ the $k$-Chordality Problem, which asks to decide whether a graph has chordality at most $k$, is NP-complete.

Keywords

FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold