
doi: 10.37236/1042
In this paper we define and study the distinguishing chromatic number, $\chi_D(G)$, of a graph $G$, building on the work of Albertson and Collins who studied the distinguishing number. We find $\chi_D(G)$ for various families of graphs and characterize those graphs with $\chi_D(G)$ $ = |V(G)|$, and those trees with the maximum chromatic distingushing number for trees. We prove analogs of Brooks' Theorem for both the distinguishing number and the distinguishing chromatic number, and for both trees and connected graphs. We conclude with some conjectures.
Coloring of graphs and hypergraphs, Graphs and abstract algebra (groups, rings, fields, etc.)
Coloring of graphs and hypergraphs, Graphs and abstract algebra (groups, rings, fields, etc.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
