
arXiv: 2103.00403
A graph in which every connected induced subgraph has a disconnected complement is called a cograph. Such graphs are precisely the graphs that do not have the 4-vertex path as an induced subgraph. We define a $2$-cograph to be a graph in which the complement of every $2$-connected induced subgraph is not $2$-connected. We show that, like cographs, $2$-cographs can be recursively defined and are closed under induced minors. We characterize the class of non-$2$-cographs for which every proper induced minor is a $2$-cograph. We further find the finitely many members of this class whose complements are also induced-minor-minimal non-$2$-cographs.
Connectivity, minor, induced subgraph, FOS: Mathematics, Mathematics - Combinatorics, 05C40, 05C83, Graph minors, complement, Combinatorics (math.CO), cograph
Connectivity, minor, induced subgraph, FOS: Mathematics, Mathematics - Combinatorics, 05C40, 05C83, Graph minors, complement, Combinatorics (math.CO), cograph
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
