Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.3...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.36227/techr...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.36227/techr...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aspect Based Sentiment Analysis - Twitter

Authors: Jinan Fiaidhi; Vashishtha Upadhyay; AKASH LAKHANI;

Aspect Based Sentiment Analysis - Twitter

Abstract

<p>Due to the increased use and popularity of social media platforms in the most recent technological period, sentiment categorization has emerged as an important research area among those platforms. When it comes to Twitter, the main problem of previous research is, they all did a sentiment classification on the document level (Tweet level). It cannot classify the sentiment for any particular aspect. When it comes to the review of any multifunctional product and service, gathering an overall positive or negative mood may not be helpful to the firms as it is more crucial to ascertain precisely what their customers are happy or upset about, to bring the updates and changes on that particular product and service. </p> <p>In addition to this, what if someone wants to know the sentiments about recently generated data or tweets? What if someone wants to know the sentiment for data between a particular date range? What if users want to get sentiment of the tweets regarding current ongoing events and happenings? Along with this, very few of them performed aspect-based sentiment analysis on other platforms and they are using the same data set for training purposes as well as analytics purposes. So here we come up with the idea of Aspect based sentiment analysis on twitter, in which we train our model with a publicly available dataset, and then the user will give a particular hashtag and aspects. Our system will get tweets related to that specific hashtag from publicly available daily search twitter API and our model will take those tweets as input for analytics. Then machine learning operations will be performed on those tweets to find sentiment analysis for that hashtag’s tweet and its aspects with the best accuracy. In that way, we can get responses from people on any event, feedback or national issue, or matter of people's support. The experimental findings also showed that our method beats current state-of-the-art approaches.</p>

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid