
Opinion Mining (OM) is also called as Sentiment Analysis (SA). Aspect Based Opinion Mining (ABOM) is also called as Aspect Based Sentiment Analysis (ABSA). In this paper, three new features are proposed to extract the aspect term for Aspect Based Sentiment Analysis (ABSA). The influence of the proposed features is evaluated on five classifiers namely Decision Tree (DT), Naive Bayes (NB), K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Conditional Random Fields (CRF). The proposed features are evaluated on the Two datasets on Restaurant and Laptop domains available in International Workshop on Semantic Evaluation 2014 i.e. SemEval 2014. The influence of proposed features is evaluated using Precision, Recall and F1 measures. The proposed features are highly influencing for aspect term extraction on classifiers. The performance of SVM and CRF classifiers with proposed features is more influencing for aspect term extraction compared with NB, DT and KNN classifiers.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
