
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
At present times, Cloud Computing (CC) becomes more familiar in several domains such as education, media, industries, government, and so on. On the other hand, uploading sensitive data to public cloud storage services involves diverse security issues, specifically integrity, availability and confidentiality to organizations/companies. Besides, the open and distributed (decentralized) structure of the cloud is highly prone to cyber attackers and intruders. Therefore, it is needed to design an intrusion detection system (IDS) for cloud environment to achieve high detection rate with low false alarm rate. The proposed model involves a binary grasshopper optimization algorithm with mutation (BGOA-M) as a feature selector to choose the optimal features. For classification, improved particle swarm optimization (IPSO) based NN model, called IPSO-NN has been derived. The significance of the IPSO-NN model is assessed using a set of two benchmark IDS dataset. The experimental results stated that the IPSO-NN model has achieved maximum accuracy values of 99.36% and 97.80% on the applied NSL-KDD 2015 and CICIDS 2017 dataset. The obtained experimental outcome clearly pointed out the extraordinary detection performance of the IPSO-NN model over the compared methods.
Cloud computing, Intrusion, Detection, Feature Selection, Neural Network.
Cloud computing, Intrusion, Detection, Feature Selection, Neural Network.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 2 | |
downloads | 4 |