
Using bank customer churn data, we demonstrate the explanatory and predictive capacity of monotonic decision rules. Since the data are partially ordinal, they are structured by a new version of the Variable Consistency Dominance-based Rough Set Approach before the induction of monotonic decision rules. The induced rules characterize loyal customers and the ones who left the bank. Such an approach is in line with explainable AI, aiming to obtain a transparent and understandable decision model. In the course of a computational experiment, we compare the predictive performance of monotonic rules with several well-known machine learning models.
Dominance-based Rough Set Approach, Ordinal classification with monotonicity constraints, Monotonic decision rules, Customer churn
Dominance-based Rough Set Approach, Ordinal classification with monotonicity constraints, Monotonic decision rules, Customer churn
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
