
doi: 10.34657/12521
Theory and application go hand in hand in most areas of statistics. In a world flooded with huge amounts of data waiting to be analyzed, classified and transformed into useful outputs, the designing of fast, robust and stable algorithms has never been as important as it is today. On the other hand, irrespective of whether the focus is put on estimation, prediction, classification or other purposes, it is equally crucial to provide clear guarantees that such algorithms have strong theoretical guarantees. Many statisticians, independently of their original research interests, have become increasingly aware of the importance of the numerical needs faced in numerous applications including gene expression profiling, health care, pattern and speech recognition, data security, marketing personalization, natural language processing, to name just a few. The goal of this workshop is twofold: (a) exchange knowledge on successful algorithmic approaches and discuss some of the existing challenges, and (b) to bring together researchers in statistics and machine learning with the aim of sharing expertise and exploiting possible differences in points of views to obtain a better understanding of some of the common important problems.
Konferenzschrift, 510
Konferenzschrift, 510
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
