<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abrasive waterjet cutting is superior to many other non-traditional machining processes in processing variety of materials, particularly difficult-to-cut materials and has found extensive applications in industry. This paper assesses the influence of process parameters on depth of cut which is an important cutting performance measure in abrasive waterjet cutting of mild steel. Experiments were conducted in varying water pressure, nozzle traverse speed, abrasive mass flow rate and standoff distance for cutting mild steel using abrasive waterjet cutting process. The effects of these parameters on depth of cut have been studied based on the experimental results. In order to correctly select the process parameters, an empirical model for the prediction of depth of cut in abrasive waterjet cutting of mild steel is developed using regression analysis. This developed model has been verified with the experimental results that reveal a high applicability of the model within the experimental range used.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |