
pmid: 37849467
pmc: PMC10578142
Les progrès rapides des techniques de synthèse de l'ADN ont permis l'assemblage et l'ingénierie des génomes viraux et microbiens. Les organismes eucaryotes multicellulaires, avec leurs génomes plus grands, leurs transposons abondants et leur régulation épigénétique prédominante, présentent une nouvelle frontière pour la génomique synthétique. La génomique synthétique des plantes a longtemps été proposée, et des progrès passionnants ont été réalisés en utilisant l'approche descendante. Dans cette perspective, nous proposons d'appliquer la synthèse du génome ascendante dans des plantes multicellulaires, à partir du modèle de mousse Physcomitrium patens , dans lequel la recombinaison homologue, l'administration d'ADN et la régénération sont possibles, bien que d'autres optimisations soient nécessaires. Nous discutons ensuite des obstacles techniques, y compris l'assemblage du génome et la transformation des plantes, associés à la génomique synthétique dans les plantes à graines.
Los rápidos avances en las técnicas de síntesis de ADN han permitido el ensamblaje y la ingeniería de genomas virales y microbianos. Los organismos eucariotas multicelulares, con sus genomas más grandes, transposones abundantes y regulación epigenética prevalente, presentan una nueva frontera para la genómica sintética. La genómica sintética de plantas se ha propuesto durante mucho tiempo, y se ha logrado un progreso emocionante utilizando el enfoque de arriba hacia abajo. En esta perspectiva, proponemos aplicar la síntesis del genoma de abajo hacia arriba en plantas multicelulares, a partir del modelo Moss Physcomitrium patens , en el que es posible la recombinación homóloga, la entrega de ADN y la regeneración, aunque son necesarias más optimizaciones. Luego discutimos las barreras técnicas, incluido el ensamblaje del genoma y la transformación de plantas, asociadas con la genómica sintética en plantas de semillas.
Rapid advances in DNA synthesis techniques have allowed the assembly and engineering of viral and microbial genomes. Multicellular eukaryotic organisms, with their larger genomes, abundant transposons, and prevalent epigenetic regulation, present a new frontier to synthetic genomics. Plant synthetic genomics have long been proposed, and exciting progress has been made using the top-down approach. In this perspective, we propose applying bottom-up genome synthesis in multicellular plants, starting from the model moss Physcomitrium patens , in which homologous recombination, DNA delivery, and regeneration are possible, although further optimizations are necessary. We then discuss technical barriers, including genome assembly and plant transformation, associated with synthetic genomics in seed plants.
سمح التقدم السريع في تقنيات تخليق الحمض النووي بتجميع وهندسة الجينوم الفيروسي والميكروبي. تقدم الكائنات حقيقية النواة متعددة الخلايا، مع جينوماتها الأكبر، والتنقلات الوفيرة، والتنظيم اللاجيني السائد، حدودًا جديدة لعلم الجينوم الاصطناعي. تم اقتراح علم الجينوم الاصطناعي النباتي منذ فترة طويلة، وتم إحراز تقدم مثير باستخدام النهج التنازلي. من هذا المنظور، نقترح تطبيق تخليق الجينوم من أسفل إلى أعلى في النباتات متعددة الخلايا، بدءًا من نموذج MOSS Physcomitrium patens ، حيث يمكن إعادة التركيب المتماثل، وإيصال الحمض النووي، والتجديد، على الرغم من ضرورة إجراء المزيد من التحسينات. ثم نناقش الحواجز التقنية، بما في ذلك تجميع الجينوم وتحويل النبات، المرتبطة بعلم الجينوم الاصطناعي في نباتات البذور.
Genome engineering, Multicellular organism, Genome Evolution and Polyploidy in Plants, Plant Science, QH426-470, Gene, Transposable element, Agricultural and Biological Sciences, Computational biology, Biochemistry, Genetics and Molecular Biology, Genetics, Molecular Biology, Biology, Synthetic biology, Elicitor Signal Transduction for Metabolite Production, Genome, Comparative genomics, Life Sciences, Genomics, FOS: Biological sciences, Perspective, Viral RNA Silencing and Plant Immunity, Epigenetic Regulation, TP248.13-248.65, Biotechnology, Genome editing
Genome engineering, Multicellular organism, Genome Evolution and Polyploidy in Plants, Plant Science, QH426-470, Gene, Transposable element, Agricultural and Biological Sciences, Computational biology, Biochemistry, Genetics and Molecular Biology, Genetics, Molecular Biology, Biology, Synthetic biology, Elicitor Signal Transduction for Metabolite Production, Genome, Comparative genomics, Life Sciences, Genomics, FOS: Biological sciences, Perspective, Viral RNA Silencing and Plant Immunity, Epigenetic Regulation, TP248.13-248.65, Biotechnology, Genome editing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
