Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Virusesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Viruses
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Viruses
Article . 2024
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Viruses
Article . 2023
Data sources: DOAJ
versions View all 4 versions
addClaim

Reclassification of ASFV into 7 Biotypes Using Unsupervised Machine Learning

Authors: Mark Dinhobl; Edward Spinard; Nicolas Tesler; Hillary Birtley; Anthony Signore; Aruna Ambagala; Charles Masembe; +2 Authors

Reclassification of ASFV into 7 Biotypes Using Unsupervised Machine Learning

Abstract

In 2007, an outbreak of African swine fever (ASF), a deadly disease of domestic swine and wild boar caused by the African swine fever virus (ASFV), occurred in Georgia and has since spread globally. Historically, ASFV was classified into 25 different genotypes. However, a newly proposed system recategorized all ASFV isolates into 6 genotypes exclusively using the predicted protein sequences of p72. However, ASFV has a large genome that encodes between 150–200 genes, and classifications using a single gene are insufficient and misleading, as strains encoding an identical p72 often have significant mutations in other areas of the genome. We present here a new classification of ASFV based on comparisons performed considering the entire encoded proteome. A curated database consisting of the protein sequences predicted to be encoded by 220 reannotated ASFV genomes was analyzed for similarity between homologous protein sequences. Weights were applied to the protein identity matrices and averaged to generate a genome-genome identity matrix that was then analyzed by an unsupervised machine learning algorithm, DBSCAN, to separate the genomes into distinct clusters. We conclude that all available ASFV genomes can be classified into 7 distinct biotypes.

Keywords

Genotype, Swine, genotype, biotype, Microbiology, African Swine Fever Virus, QR1-502, Article, classification, Animals, African swine fever, ASFV, African Swine Fever, Algorithms, Unsupervised Machine Learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Green
gold