Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Universe
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Universe
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Propagation in Loop Quantum Gravity

Authors: Thiemann, Thomas; Varadarajan, Madhavan;

On Propagation in Loop Quantum Gravity

Abstract

A rigorous implementation of the Wheeler–Dewitt equations was derived in the context of Loop Quantum Gravity (LQG) and was coined Quantum Spin Dynamics (QSD). The Hamiltonian constraint of QSD was criticised as being too local and to prevent “propagation” in canonical LQG. That criticism was based on an algorithm developed for QSD for generating solutions to the Wheeler–DeWitt equations. The fine details of that algorithm could not be worked out because the QSD Hamiltonian constraint makes crucial use of the volume operator, which cannot be diagonalised analytically. In this paper, we consider the U(1)3 model for Euclidean vacuum LQG which consists of replacing the structure group SU(2) by U(1)3 and otherwise keeps all properties of the SU(2) theory intact. This enables analytical calculations and the fine details of the algorithm ingto be worked out. By considering one of the simplest possible non-trivial classes of solutions based on very small graphs, we show that (1) an infinite number of solutions ingexist which are (2) generically not normalisable with respect to the inner product on the space of spatially diffeomorphism invariant distributions and (3) generically display propagation. Due to the closeness of the U(1)3 model to Euclidean LQG, it is extremely likely that all three properties hold also in the SU(2) case and even more so in physical Lorentzian LQG. These arguments can in principle be made water tight using modern numerical (e.g., ML or QC) methods combined with the techniques developed in this paper which we reserve for future work.

Keywords

High Energy Physics - Theory, High Energy Physics - Lattice (hep-lat), Elementary particle physics, FOS: Physical sciences, QC793-793.5, General Relativity and Quantum Cosmology (gr-qc), Mathematical Physics (math-ph), General Relativity and Quantum Cosmology, High Energy Physics - Lattice, High Energy Physics - Theory (hep-th), canonical quantum gravity, canonical quantum gravity; Wheeler DeWitt equation; propagation, propagation, Wheeler DeWitt equation, Mathematical Physics, ddc: ddc:530

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold