Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Symmetryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Symmetry
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Early Fault Diagnosis of Bearings Based on Symplectic Geometry Mode Decomposition Guided by Optimal Weight Spectrum Index

Authors: Chenglong Wei; Yiqi Zhou; Bo Han; Pengchuan Liu;

Early Fault Diagnosis of Bearings Based on Symplectic Geometry Mode Decomposition Guided by Optimal Weight Spectrum Index

Abstract

When the rotating machinery fails, the signal generated by the faulty component often no longer maintains the original symmetry, which makes the vibration signal with nonlinear and non-stationary characteristics, and is easily affected by background noise and other equipment excitation sources. In the early stage of fault occurrence, the fault signal is weak and difficult to extract. Traditional fault diagnosis methods are not able to easily diagnose fault information. To address this issue, this paper proposes an early fault diagnosis method for symplectic geometry mode decomposition (SGMD) based on the optimal weight spectrum index (OWSI). Firstly, using normal and fault signals, the optimal weight spectrum is derived through convex optimization. Secondly, SGMD is used to decompose the fault signal, obtaining a series of symplectic geometric modal components (SGCs) and calculating the optimal weight index of each component signal. Finally, using the principle of maximizing the OWSI, sensitive components reflecting fault characteristics are selected, and the signal is reconstructed based on this index. Then, envelope analysis is performed on the sensitive components to extract early fault characteristics of rolling bearings. OWSI can effectively distinguish the interference components in fault signals using normal signals, while SGMD has the characteristic of unchanged phase space structure, which can effectively ensure the integrity of internal features in data. Using actual fault data of rolling bearings for verification, the results show that the proposed method can effectively extract sensitive components that reflect fault characteristics. Compared with existing methods such as Variational Mode Decomposition (VMD), Feature Mode Decomposition (FMD), and Spectral Kurtosis (SK), this method has better performance.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold