
doi: 10.3390/sym15010149
In this paper, we introduce a new quadruple number sequence by means of Leonardo numbers, which we call ordered Leonardo quadruple numbers. We determine the properties of ordered Leonardo quadruple numbers including relations with Leonardo, Fibonacci, and Lucas numbers. Symmetric and antisymmetric properties of Fibonacci numbers are used in the proofs. We attain some well-known identities, the Binet formula, and a generating function for these numbers. Finally, we provide illustrations of the identities.
Fibonacci quaternions; Leonardo numbers; quadruple numbers
Fibonacci quaternions; Leonardo numbers; quadruple numbers
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
