Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Symmetryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Symmetry
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

Quantum Integral Inequalities in the Setting of Majorization Theory and Applications

Authors: Bandar Bin-Mohsin; Muhammad Zakria Javed; Muhammad Uzair Awan; Hüseyin Budak; Hasan Kara; Muhammad Aslam Noor;

Quantum Integral Inequalities in the Setting of Majorization Theory and Applications

Abstract

In recent years, the theory of convex mappings has gained much more attention due to its massive utility in different fields of mathematics. It has been characterized by different approaches. In 1929, G. H. Hardy, J. E. Littlewood, and G. Polya established another characterization of convex mappings involving an ordering relationship defined over Rn known as majorization theory. Using this theory many inequalities have been obtained in the literature. In this paper, we study Hermite–Hadamard type inequalities using the Jensen–Mercer inequality in the frame of q˙-calculus and majorized l-tuples. Firstly we derive q˙-Hermite–Hadamard–Jensen–Mercer (H.H.J.M) type inequalities with the help of Mercer’s inequality and its weighted form. To obtain some new generalized (H.H.J.M)-type inequalities, we prove a generalized quantum identity for q˙-differentiable mappings. Next, we obtain some estimation-type results; for this purpose, we consider q˙-identity, fundamental inequalities and the convexity property of mappings. Later on, We offer some applications to special means that demonstrate the importance of our main results. With the help of numerical examples, we also check the validity of our main outcomes. Along with this, we present some graphical analyses of our main results so that readers may easily grasp the results of this paper.

Country
Turkey
Keywords

convex; quantum; Jensen–Mercer; differentiable; majorization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold